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A General Approach to Edge Singularity Extraction Near
Composed Wedges in Boundary-Element Method

Pierluigi Cecchini, Fernando Bardati, and Rodolfo Ravanelli

Abstract—A general approach, based on the two-dimensional boundary-
element method (BEM), has been proposed to extract the electromagnetic-
field singularities in the presence of composed wedges, i.e., those formed by
adjacent dielectric and conducting bodies. The method requires the knowl-
edge of the field singularity order and is based on solution factorization
into both a regular part and a singular one. Only the regular part has to
be determined after extraction. No restrictions are imposed on position and
order of singularities since each edge is treated independently of the others.
Moreover, the method does not require the solution of further equations or
use of special basis functions. It naturally extends the conventional BEM
approach, improving its accuracy and convergence performances. Exam-
ples are given for a microstrip transmission line with a strip of finite thick-
ness. The results show practicability and advantages of the new approach.

Index Terms—BEM, edge singularity.

I. INTRODUCTION

The electromagnetic-field behavior near composed wedges, formed
by adjacent dielectric and conducting bodies, has been widely investi-
gated by several authors. Adjacent wedges of different dielectric mate-
rials, as well as a conducting one, having the tip in common, compose
the angular domain. Static solutions for this problem can be found in
[1]–[6]. Meixner investigated the time-varying case [1] and postulated
that the field near an edge can be locally expressed as a series, whose
first term takes the singular behavior into account. In his analysis, the
results for the static case are presented as the zero-frequency limit of the
dynamic one. The static solution characterizes the local field behavior
even in a time-varying case, which can be imagined as the quasi-static
limit in a region whose dimensions, compared with the wavelength, are
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Fig. 1. Cross section of microstrip transmission line with truncated dielectric
and finite thickness strip (W = 4mm,H = 2mm,L = 24mm,T = 0:2mm,
" = 5).

small. Andersen and Solodukhiov observed that the Meixner series is
not self-consistent in the case where all wedges are dielectric and their
angles are a fractional multiple of� [2]; the singularity order is still
determined by the dominant static term. In [3], a characteristic equation
was obtained for the singularity order in the general case ofN dielectric
wedges and a perfectly conducting one.

It is well known that the field singularities can be modeled for
numerical computations in order to speed up convergence and reduce
memory. In fact, direct numerical solutions to such problems require
large numbers of basis functions and well-refined domain discretiza-
tion [7], [8]. Alternatively, solutions can be achieved incorporating
suitable edge-expansion functions into the numerical schemes [5],
[9]–[13]. In problems that can be modeled by an integral equation over
the interval[�L;L], the edge condition can be expressed by means of
a suitable entire-domain expansion
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whereF (x) represents a singular field component,� 2 (0; 1) is the
order of the singularity as a function of the distance� from the tip (i.e.,
the field behaves as1=��), andP�

n
(x=L) are orthogonal polynomials

over [�L;L] with respect to the weighting function[1 � (x=L)2]�,
such as Chebyshev(� = 0:5) or Gegenbauer polynomials. This ap-
proach properly works when the unknown function exhibits a symmet-
rical singular behavior at the end points of the interval.

On the other hand, sub-domain edge functions can only be used near
edges, with the advantage that each edge can be treated in a different
way. However, additional work may be necessary to implement dif-
ferent kinds of basis functions over each sub-domain and to link the
solutions [5], [14]. A further technique, based upon the boundary inte-
gral equation [9], consists in approximating the field near an edge by
the firstN terms of the Meixner series, with unknown coefficients. The
resulting linear problem has more unknowns than equations and further
approximate conditions (N � 1 per edge) have to be imposed at suit-
able points away from the edge. In [9], an indirect BEM approach to
handle square-root edge singularities has been presented with reference
to microstrips. It is based on the extraction of factor1� (2x=w)2

from the charge density over the strip (of widthw) and leads to a linear
system involving the remaining regular charge density factor.

In this paper, we generalize the last approach, developing a tech-
nique, suitable for BEM, to extract the field singularities, whose order
has already been determined in the proximity of composed wedges. The
method is able to solve problems with singularities of general order
and position; it does not require the solution of additional equations
and makes use of the same polynomial basis for both the composed
wedge and regular boundary. Therefore, the present procedure can be
easily implemented as an extension of a standard BEM code. It can
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Fig. 2. Potential function normal derivative on lineCD of Fig. 1 (in decibels per volts/millimeter) versus distance fromD.

be used for static analysis of TEM and quasi-TEM modes in transmis-
sion lines, computation of transmission-line parameters, and solution
of plane-wave edge-scattering problems.

II. A NALYTICAL FORMULATION

The standard BEM formulation for a two-dimensional Helmholtz
or Laplace equation in an inhomogeneous domain can be found
in [15]–[20], thus, it will not be repeated here. Let us assume that
the closed boundary of each homogeneous region can be divided
into M regular arcs�l, whose parametric representations are
rl(t) = [xl(t); yl(t)], for t 2 [tl; tl+1], l = 1; . . . ;M . At a boundary
point ri, the following integral equation can be written:
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Here,r0

l(t) = drl=dt.�l(t) = �(rl(t)), andGl(ri; t) = G(ri; rl(t))
denote potential and Green’s functions, respectively, atr

1
(t). ci is

residual coefficient (0.5 at all boundary regular points),�i is the poten-
tial function atri, andn̂l is outward normal to�l. The normal deriva-
tive of �l(t), which will be indicated by	l(t), is to be determined
on the arcs, where a Dirichlet condition holds, and on interfaces be-
tween different media. Depending on the nature of the electromagnetic
problem,	l(t) is proportional to unknown electric or magnetic charge
or current density. It may diverge at some points in field problems with
edge singularities. The order of the singularities can be determined
from Meixner series [1]. In a small circle with its center on the tip and
radiusr (with r � �), the behavior of	l(t) can be approximated by
the dominant term behaving as1=��, where� is distance from the tip
and0 < � < 1 depends on the local geometrical configuration and
materials.

We choose the boundary arcs to contain one singularity of	l(t),
at the most, at either end point. As a consequence, the number of arcs
M is not necessarily the minimum one. For simplicity of notation, we
assume that the firstMs arcs�l (l = 1; . . . ;Ms) contain an edge
singularity, while the remainingMns do not, withM = Ms +Mns.

This paper essentially deals with the efficient evaluation of the in-
tegrals in (1) when they are defined on curves with singularities(l �

Ms). We restrict ourselves to the neighborhood of points for which
there is a well-defined tangent along the edge. According to [1], we
then consider the edge as locally straight. Therefore, let�l (l � Ms)
be an oriented straight-line segment at an angle�0 with thex-axis. The
parametric equations of�l can be written fort 2 [�1; 1] as

x(t) = x0 + t
L

2
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L

2
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whereL is length and(x0; y0) are midpoint coordinates. Assume that
	l(t) is singular att = �1, with order��. The distance between
r(t) = [x(t); y(t)] and the end pointt = �1 can be written as

�(t) =
L

2
(1 + t); �1 � t � 1 (3)

We then define a new function̂	l(t) as theregular partof 	l(t) ac-
cording to
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	̂l(t) is nonsingular, end points included, therefore, it can be easily
approximated by means of polynomials. As an advantage of the pro-
posed regularization,	l is equal to	m at the nonsingular common
end-point of two adjacent arcs�l and�m. Substitution of (2) and (4)
into (1) yields the following equation for the integrals over arcs in-
cluding edge-singularity contributions int = �1:
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where�� = 1� ��. By introducing a new variablez as

z = (1 + t)� ; �1 < t � 1 (6)

the integral on the right-hand side of (5) becomes
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where, for the sake of simplicity, we have used the same symbol for
functions oft andz. If we now assume that, on�l, the singularity of
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Fig. 3. Microstrip line characteristic impedance versus number of elements on lineAB of Fig. 1.

	l(t) is located att = +1, with order�+, it can easily be shown that
the integral on the left-hand side of (5) can be rewritten as
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with �+ = 1� �+. Thus, the original problem has been reformulated
in terms of new unknown nonsingular functions	̂l(t). Equations (7)
and (8) allow the integrals in (1) over boundary portions, including edge
singularities, to be efficiently performed.

The above procedure can be advantageous for the evaluation of the
following integral:
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	(t)dt (9)

which is frequently met when an integral parameter, such the charac-
teristic impedance, is the target of a BEM computation.

III. N UMERICAL RESULTS

The method of Section II has been applied to the quasi-static analysis
of a microstrip line with truncated dielectric"r"0 and finite metalliza-
tion thickness (Fig. 1). At edgesA andB, the charge density singularity
order is� = 1=3. At C andD, two composed wedges are formed by
the metallic strip and two dielectric media (air and substrate). In this
case, it has been shown [1] that the singularity order� can be achieved
from the solution of

"r � 1
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(10)

where� = 1 � � (the solution of (10) is explicit in [3]). We found
1/2.2386 for� ("r = 5). It is worthy noting that the charge density
has different orders of edge singularity on the short sides of the thick
strip. In Fig. 2, the potential-function normal derivative (in decibels per
volts/millimeters) versus distance from tipC is shown. At a small dis-
tance, the function is a straight line, whose slope gives the singularity

order. Extracting the singularity according to the proposed approach
provides a solution whose slope is in accordance with the theory, while
it is affected by a 12% error if the singularity is not extracted. At some
distance from the edge, higher order terms of the Meixner series are
not negligible and solutions diverge from straight lines. To our knowl-
edge, no theoretical solution is available for the direct comparison of
the numerical results. However, the solution obtained after singularity
extraction does not exhibit the oscillation, which instead affects the so-
lution in the absence of extraction.

The diagrams in Fig. 3 refer to the evaluation of the characteristic
impedance of the microstrip line of Fig. 1 for an increasing number
of elements over the segmentAB in the BEM scheme. A satisfactory
convergence to the theoretical valueZc = 44:63 
 [21] can be ap-
preciated with and without singularity extraction (accuracy better than
0.05%). However, the convergence rate is clearly improved if the edge
singularities are removed by the proposed method.

The results have been obtained using quadratic elements, i.e., using
second-order polynomials. The procedure has been implemented as an
extension of an in-house C++ BEM code. The solution usually takes
few seconds on a PC with 300-MHz 64-MB RAM. It may takes about
1 m when the number of elements increases, even if Fig. 3 shows that
using many elements does not significantly improve the accuracy.

IV. CONCLUSIONS

In this paper, a general approach has been presented to cope with the
singular behavior of the electromagnetic field near composed wedges
in a two-dimensional BEM. It requires knowledge of the order of singu-
larity for each such edge. Application to a microstrip transmission line
shows that the proposed method improves the performance of a BEM
computation in comparison with a conventional BEM scheme. In par-
ticular, it provides more accurate solutions for the field in the vicinity
of the wedges and improves the convergence rate in the evaluation of
integral parameters. It can easily be implemented to extend the perfor-
mance of a standard BEM code.
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