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It is well known that the field singularities can be modeled for
numerical computations in order to speed up convergence and reduce
memory. In fact, direct numerical solutions to such problems require

A General Approach to Edge Singularity Extraction Near large numbers of basis functions and well-refined domain discretiza-

Composed Wedges in Boundary-Element Method tion [7], [8]. Alternatively, solutions can be achieved incorporating
suitable edge-expansion functions into the numerical schemes [5],

Pierluigi Cecchini, Fernando Bardati, and Rodolfo Ravanelli  [9]-{13]. In problems that can be modeled by an integral equation over
the interval— L, L], the edge condition can be expressed by means of
a suitable entire-domain expansion

b
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Abstract—A general approach, based on the two-dimensional boundary-
element method (BEM), has been proposed to extract the electromagnetic-

field singularities in the presence of composed wedges, i.e., those formed by 1 b W /T
adjacent dielectric and conducting bodies. The method requires the knowl- Flz)= +——= Z cn Py (f)
edge of the field singularity order and is based on solution factorization [1 — (;c/L)Q] n=0

into both a regular part and a singular one. Only the regular part has to
be determined after extraction. No restrictions are imposed on position and

order of singularities since each edge is treated independently of the others. -, . 8 .
Moreover, the method does not require the solution of further equations or whereF'(x) represents a singular field componente (0, 1) is the

use of special basis functions. It naturally extends the conventional BEM Order of the singularity as a function of the distapdeom the tip (i.e.,
approach, improving its accuracy and convergence performances. Exam- the field behaves ak/p®), and P> («/ L) are orthogonal polynomials
ples are given for a microstrip transmission line with a strip of finite thick-  over [— L, L] with respect to the weighting functidi — (J./L)Z]o,
ness. The results show practicability and advantages of the new approach. g ,ch as Chebyshéw = 0.5) or Gegenbauer polynomials. This ap-

Index Terms—BEM, edge singularity. proach properly works when the unknown function exhibits a symmet-
rical singular behavior at the end points of the interval.

On the other hand, sub-domain edge functions can only be used near
edges, with the advantage that each edge can be treated in a different
The electromagnetic-field behavior near composed wedges, formiay. However, additional work may be necessary to implement dif-
by adjacent dielectric and conducting bodies, has been widely invedgrent kinds of basis functions over each sub-domain and to link the

gated by several authors. Adjacent wedges of different dielectric magelutions [5], [14]. A further technique, based upon the boundary inte-
rials, as well as a conducting one, having the tip in common, compa@@l equation [9], consists in approximating the field near an edge by
the angular domain. Static solutions for this problem can be foundtine first/V terms of the Meixner series, with unknown coefficients. The
[1]-[6]. Meixner investigated the time-varying case [1] and postulatg@sulting linear problem has more unknowns than equations and further
that the field near an edge can be locally expressed as a series, wiagpggoximate conditions\| — 1 per edge) have to be imposed at suit-
first term takes the singular behavior into account. In his analysis, table points away from the edge. In [9], an indirect BEM approach to
results for the static case are presented as the zero-frequency limit oftaedle square-root edge singularities has been presented with reference
dynamic one. The static solution characterizes the local field behaviormicrostrips. It is based on the extraction of fac{gi — (2z/w)?

even in a time-varying case, which can be imagined as the quasi-stéin the charge density over the strip (of widtf) and leads to a linear

limit in a region whose dimensions, compared with the wavelength, s#gstem involving the remaining regular charge density factor.

In this paper, we generalize the last approach, developing a tech-
nigue, suitable for BEM, to extract the field singularities, whose order
has already been determined in the proximity of composed wedges. The
method is able to solve problems with singularities of general order
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Fig. 2. Potential function normal derivative on lig&D of Fig. 1 (in decibels per volts/millimeter) versus distance frbm

be used for static analysis of TEM and quasi-TEM modes in transmi&F; ). We restrict ourselves to the neighborhood of points for which
sion lines, computation of transmission-line parameters, and solutitrere is a well-defined tangent along the edge. According to [1], we

of plane-wave edge-scattering problems. then consider the edge as locally straight. Thereford; lét < M,)
be an oriented straight-line segment at an adgheith thez-axis. The
II. ANALYTICAL FORMULATION parametric equations @f; can be written fot € [—1, 1] as
The standard BEM formulation for a two-dimensional Helmholtz 2(t) = a0 + z‘é cos(fo) y(t) =yo + t% sin(fo) @

or Laplace equation in an inhomogeneous domain can be found

in [15]-[20], thus, it will not be repeated here. Let us assume thatereL is length and zo, yo) are midpoint coordinates. Assume that
the closed boundary of each homogeneous region can be dividedt) is singular att = —1, with ordera™. The distance between
into M regular arcsT;, whose parametric representations are(t) = [z(t),y(¢)] and the end point = —1 can be written as

r,(t) = [xi(t), yi(¢)], fort € [tr, tita], I = 1,..., M. At a boundary I
pointr;, the following integral equation can be written: pt) =51+, -1<t<1 3)
_— We then define a new functio&,(t) as theregular partof ¥,(¢) ac-
M .
- ‘ cording to
wbi =Y [ ity 5 miotar g ) )
= ’” . p(O\* 14+¢\°
¢ P(t) = W(t) | —== =U(t) | — , -1<t<1
o bt 9GH (¢ L 2
-3 / () " il (@) )
=1y \i!,(t) is nonsingular, end points included, therefore, it can be easily

approximated by means of polynomials. As an advantage of the pro-
Herer((t) = dr,/dt. ®,(t) = ®(r,(t)),andG(r,; t) = G(r,;r,(t)) posed regularization¥, is equal to¥,, at the nonsingular common
denote potential and Green’s functions, respectively;, ét). ¢; is end-point of two adjacent ar@§ andl'.,. Substitution of (2) and (4)
residual coefficient (0.5 at all boundary regular poinds)js the poten- into (1) yields the following equation for the integrals over arcs in-
tial function atr,, and#, is outward normal td;. The normal deriva- cluding edge-singularity contributions tn= —1:
tive of ®;(¢), which will be indicated by¥;(#), is to be determined 1 1 R
on the arcs, where a Dirichlet _condition holds, and on interfaces be_- L / Gilr s )W (1) dt = i / Gulrit) (1) _dt (5)
tween different media. Depending on the nature of the electromagnetic 2 ‘ 28 (14t
problem,¥,(¢) is proportional to unknown electric or magnetic charge !
or current density. It may diverge at some points in field problems withhere3™ = 1 — o™ . By introducing a new variable as
edge singularities. The order of the singularities can be determined 8-
from Meixner series [1]. In a small circle with its center on the tip and 2= (141", —l<t<l ()
radiusr (with < A), the behavior oft,(¢) can be approximated by the integral on the right-hand side of (5) becomes
the dominant term behaving agp”, wherep is distance from the tip L

and0 < « < 1 depends on the local geometrical configuration and I i B X B
/ G <zi, AP 1)‘111 <z1/'3 — l)dz

materials. Py
We choose the boundary arcs to contain one singularity 6f), 2078 5
at the most, at either end point. As a consequence, the number of arcs 28~
M is not necessarily the minimum one. For simplicity of notation, we L ' A
assume that the firstZ, arcsT; (I = 1,...,M,) contain an edge T 2 - / G (L;Z>‘I/’(Z)dz Q)
0

singularity, while the remaining{,.. do not, withM = M, + M,..
This paper essentially deals with the efficient evaluation of the imvhere, for the sake of simplicity, we have used the same symbol for
tegrals in (1) when they are defined on curves with singularifies  functions oft and=. If we now assume that, ofy, the singularity of
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Fig. 3. Microstrip line characteristic impedance versus number of elements oA Bnef Fig. 1.

W, (t) is located at = +1, with ordera ™, it can easily be shown that order. Extracting the singularity according to the proposed approach

the integral on the left-hand side of (5) can be rewritten as provides a solution whose slope is in accordance with the theory, while
pat itis affected by a 12% error if the singularity is not extracted. At some
L i ' et \ e 1/t distance from the edge, higher order terms of the Meixner series are
28T g+ / G <¥r" 1=z )\Ijl <1 T )‘I‘Z not negligible and solutions diverge from straight lines. To our knowl-
0

edge, no theoretical solution is available for the direct comparison of
zﬂf the numerical results. However, the solution obtained after singularity
__1L / (rv. Z)q, d> extraction does not exhibit the oscillation, which instead affects the so-
T Gi(riz)W(z)d= (8) =7 :
287 g+ lution in the absence of extraction.
. + n . 0 The diagrams in Fig. 3 refer to the evaluation of the characteristic
with 57 =1 — ™. Thus, the original problem has been reformulategh, e jance of the microstrip line of Fig. 1 for an increasing number
in terms of new unknown nonsingular functiows(t). Equations (7) .t ejements over the segmedf3 in the BEM scheme. A satisfactory
and (8) allow the integrals in (1) over boundary portions, including ed%%nvergence to the theoretical valde = 44.63 O [21] can be ap-

singularities, to be efficiently performed. _ preciated with and without singularity extraction (accuracy better than

The_ abpve procedure can be advantageous for the evaluation Of(m%%). However, the convergence rate is clearly improved if the edge
following integral: singularities are removed by the proposed method.

1 The results have been obtained using quadratic elements, i.e., using
L / T (t)dt (9) second-order polynomials. The procedure has been implemented as an
extension of an in-house45+ BEM code. The solution usually takes

few seconds on a PC with 300-MHz 64-MB RAM. It may takes about
which is frequently met when an integral parameter, such the charaan when the number of elements increases, even if Fig. 3 shows that
teristic impedance, is the target of a BEM computation. using many elements does not significantly improve the accuracy.

—1

I1l. NUMERICAL RESULTS IV. CONCLUSIONS

The method of Section Il has been applied to the quasi-static analysisy, this paper, a general approach has been presented to cope with the
of a microstrip line with truncated dielectricz, and finite metalliza- - singular behavior of the electromagnetic field near composed wedges
tion thickness (Fig. 1). AtedgesandB, the charge density singularity jn 3 two-dimensional BEM. It requires knowledge of the order of singu-
orderisa = 1/3. At C'andD, two composed wedges are formed bYgayity for each such edge. Application to a microstrip transmission line
the metallic strip and two dielectric media (air and substrate). In thigows that the proposed method improves the performance of a BEM
case, it has been shown [1] that the singularity ordean be achieved computation in comparison with a conventional BEM scheme. In par-

from the solution of ticular, it provides more accurate solutions for the field in the vicinity
sin <ﬂ3_7f) of the wedges and improves the convergence rate in the evaluation of
Er — 2 integral parameters. It can easily be implemented to extend the perfor-

(10) mance of a standard BEM code.

Er + 1 <1 /- T
sin (,3 5)

wherea = 1 — 3 (the solution of (10) is explicit in [3]). We found
1/2.2386 fora (s = 5). It is worthy noting that the charge density
has different orders of edge singularity on the short sides of the thickll] J- Meixner, “The behavior of electromagnetic fields at edg¢SEE

. . . . T . Trans. Antennas Propagatiol. AP-20, pp. 442-446, July 1972.
strip. In Fig. 2, the potential-function normal derivative (in decibels per [2] J. B. Andersen and V. V. Solodukhov, “Field behavior near a dielectric

volts/millimeters) versus distance from tipis shown. At a small dis- edge,”|EEE Trans. Antennas Propagatol. AP-26, pp. 598-602, July
tance, the function is a straight line, whose slope gives the singularity ~ 1978.
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